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Abstract. In a reasonably self-contained presentalion mathematical rigour is supplied to
the important ideas of solving certain non-Gaussian path integrals by changes of dimen-
sion and/or path-dependent time transformations. The resulting genuine path-integrai
calculus neither requires discretization prescriptions nor sophisticated methods from the
theory of stochastic differential equations. The power of the calculus is illustrated by
two standard quantum-physics applications. First, the calculation of the time-dependent
propagator corresponding to a particle on the half-line in a harmonic plus inverse-square
potential is shown o be a simple exercise. Second, the first rigorous derivation of the
energy-dependent Green function of the one-dimensional Morse system is given.

1. Introduction

The dynamical properties of a quantum mechanical system governed by a standard
Hamiltonian H = 1p? + V(§) can be expressed in terms of the imaginary-time or
Euclidean propagator. (Here and in the following we will use units such that the mass
of the particle and Planck’s constant /i are equal to one.) In Feynman’s formulation
of quantum dynamics [1] this propagator is rcpresented by a sum over histories or
path integral

(qbleXP{-fff}lqa)_ i
= L:::;;:%mexp { - -]2-/(: at (%)"}exp {—/:dt’ V(:n(t'))}.(l)

Let us call (1) the inwitive Feynman-Kac formula. It has been known for a long
time that Gaussian path integrals, corresponding to quadratic potentials V, can be
calculated explicitly. However, it is only in the last two decades that techniques for
the calculation of certain non-Gaussian path integrals have appeared in the literature.

This paper is concerned with two of these techniques, namely path-dependent time
transformations and changes of dimension. While the first technique may be considered
as an analogue of changing variablics in ordinary (Riemann, Lebesgue) integrals, the
second one is comparable to relating ordinary integrals in different dimensions by
exploiting a symmetry.

In the literature path-dependent time transformations are approached in two
different ways. The intuitive approach initiated by [2] in 1979 “in a very formal way’,
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sce the preface in {3], but further elaborated by e.g. [3-11], relies on somewhat ad
hoc discretization prescriptions of (1). Not unexpectedly, this approach runs into
severe but artificial difficulties. This is because these authors never use a bona fide
measure on the path space, which in case of (1) is the wel! known Wiener measure,
see e.g. [12, 13]. Accordingly, some of them [8, 14, 15] understand their approach
partially as a recipe to obtain results which have to be checked by operator theory
in case of doubt. Clearly, this has led to some confusion in the physics community.
Even in a recent textbook [3] whole chapters are devoted to ‘time-slicing corrections’
and ‘stabilization procedures’ invented to avoid a ‘path collapse’ which in reality does
not exist due to the stochastic nature of the paths.

The rigorous approach to path-dependent time transformations in path integra-
tion—inspired by [2]—was initiated by [16] and further elaborated by [17-22]. It
can be reduced to a theorem of Dambis, Dubins and Schwarz (1965) in the calculus
of stochastic differential equations, see e.g. [23]. These works have not received
the attention they deserve, in part because many physicists seem to be not sufficiently
familiar with the calculus of stochastic differential equations, in part because physicists
want to have a genuine path-integral calculus at their disposal. Fortunately, the basic
ideas for such a calculus can be extracted from a recent work [20] containing a
rigorous path-integral calculation for the hydrogen atom without using sophisticated
methods from stochastic calcufus.

It is one of the two main goals of the present paper to isolate the key points
of these ideas, elaborate on them and extend them to more general situations. This
will be accomplished in an clementary way. The resulting path-integral calculus is
rigorous in the sense that the missing details (specification of domains of operators
etc.) are only of a technical kind and can be supplied with additional effort,

Concerning the change-of-dimension technique a similar distinction between an
intuitive and a rigorous approach can be made. The intuitive approach is based
on certain discretization prescriptions for radial path integrals [24-26]. The change-
of-dimension technique within these prescriptions can be traced back to [25] where
centrifugal barriers are treated. It has been [urther claborated by e.g. {8, 9, 27])
Problems due to the discretization are discussed in [3, 8, 28].

It is the other main goal of the present paper to develop a rigorous approach
to the change-of-dimension technique in radial path integrals, which is based on the
Radon-Nikodym derivative of a Bessel measure with respect to another one [23, 29].
This approach was hinted at in [8, 21]. Again, we will give an elementary proof of
the key result using neither discretization prescriptions nor stochastic calculus.

The paper is organized as follows. In section 2 we introduce our notation and
a measure-theoretic definition of path integrals with respect to a general Markov
process. Section 3 introduces Bessel path integrals as generalized radial path integrals
and provides the rigorous tool (statement 1) for the change-of-dimension technique.
In section 4 the explicit path-integral calculation of the propagator corresponding
to the standard example of a harmonic plus inverse-square potential is shown to
be an immediate consequence of statement 1. Section 5, which is independent of
sections 3 and 4, presents the formalism of path-dependent time transformations. Its
main results, statements 2 and 3, constitute the basis of a well-founded and practical
caleulus for path-dependent time transformations in path integration. In order to
illustrate the power of this calculus in typical quantum-physics applications we give, to
our knowledge, the first rigorous derivation of the energy-dependent Green function
of the Morse system in section 6. This needs techniques from both sections 4 and 5.
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Elementary proofs of the statements can be found in appendices 1 and 2. Appendix 3
checks some conditions needed in section 6.

1. Basic notation, Markov processes and path inteprals

In the following it is essential that we do not only deal with Wiener path integrals,
that is, integrals over paths of the Wiener process (or Brownian motion) in the d-
dimensional Euclidean space R?, Instead, we will also consider integrals over paths
z(t) in a configuration space Q(C R?) realizing a more general continuous stationary
Markov process. Such a process is a collection of random variables indexed by positive
time ¢t € R, and taking on values in Q. It is characterized by a fransition density
m,(¢',q), which is the probability density for going from position z(t;) = g € € 10
position x(t, + t) = ¢’ € Q during time ¢ independent of ;. The transition density
satisfies the natural properties of a continuous Markov semi-group:

() m(q',q) 20

(i) f dg’ mt(q',q) =1
e
(iii) lim m,(q',¢) = 8(¢' — q)
(iv) /qu” mu(q,qYm,(¢", q) = m,,(d,q)
1
v) lizg —t—/ d¢' m,(¢,q) =0 forall e > 0 and g€ Q.
tl lg'=ql>e

Throughout this paper we will assume that all paths start at time ¢ = 0 at some
position g, € Q, that is £(0) = q,.

By Kolmogorov’s extension theorem {12, 30] the transition density m, induces
a unique measure d M, which due to (v) is concentrated on the set €(@Q,q,) of all
continuous paths starting at ¢, (see e.g. [31]). This path measure represents the joint
probability distribution of the Markov process. We stress that all paths in the path
space C(Q,q,) are open ended.

Given the measure d M, one can deline a path integral

/ dM(z] Fla] )
C(Q.g4)

of a numerical functional F* on C(Q,q,), that is, a weighted sum or mean of the
values F[z] over all continuous paths 2(1) starting at q,. Two simple and explicit
examples are

/ dM[z] =1 3)
C(Q.90)

and

f dM[z) §(x(t,) ~q,)...6(=(t))— @)
C(Q.9a)

=my, g, (naGnor) o1, (5 W) @
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where 0 < ; <, < ... < t,. While the first example is just the normalization of
the measure, the second one is a path-integral statement of the Markov property.

For a cylindrical functional f,, that is, a functional depending only on the positions
of the paths at a finitc number » of given times 0 < ¢, < t, < ... < 1., the Markov
property immediately implies

/ dM(z] f,(2(t),. .., 2(t,))
C(@,9a)

= LdQn“‘LdQI nlt“—tn_l(qniqﬂ.-—l)"‘mtl(qliqd)fn(qlS"'aqn)'

)

Since n may be arbitrarily Jarge, the value of the path integral of a fairly general func-
tional F' can be approached by suitable limiting constructions. This is the strategy of
general integration theory. It is also at the bottom of most path-integral constructions
used by physicists [1, 32].

For a given Markov process (with transition density m,) there exists a unique
generator or ‘free-particle energy’ operator 7, acting on a suitable class of numerical
functions defined on Q. Using Dirac’s notation for the integral kernel or the position
representation of an operator, the relation between the transition density of the
Markov process and its generator can be written as

(¢'lexp{—tT,, }a} = m,(q". q). (6)

This relation may be viewed as the ‘free-particle’ limit of the generalized Feynman-
Kac formula [33, chapter 5, theorem 7.6)

(qb|exp{—tﬁ}|qu>=jc(g M [a] 8(2(1) - ) exp{~j0 dt'V(w(t'))}. %)
R r

Here V{(q) is a sufficiently well-behaved real-valued ‘potential-energy’ function on Q
and V() the corresponding multiplication operator, which, when added to T,,, gives
the ‘total-energy’ operator or Hamiltonian I := T, + V(§).

A derivation of (7) follows from (5) and (6) by a suitable sequence {f,} of
cylindrical functionals. In quantum physics the LHS of (7) is usually called the time-
dependent Euclidean propagator of H. It is uniquely related to its Laplace transform

(qbl(ff - E)_1|qa) = /n dt e'f (qylexp {—tﬂ} lg,) 8)

which is called the resolvent kernel or energy-dependent Green function of H. For
nearly all A of interest in quantum physics the Green function is analytic in the
energy variable £, if E is not in the spectrum of H (see [34, theorem VIIL2]). As
it stands, the integral in (8) makes scnse only for values of E with a real part less
than the lowest spectral value of H. Nevertheless, its analytic continuation to other
values (not in the spectrum of /) coincides with the Green function.

Let us now have a look at the most important example of a Markov process, the
Wiener process in Q@ = R%. It is characterized by the transition density

, ' q)?
w(a )= eny e (- ggert @
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and its generator is the ordinary ‘kinetic-encrgy’ operator -;-;3?, where the momentum
operator 1= —i a% is the gradient divided by the imaginary unit. The induced mea-
sure dW4 on C(R? ,q,) is called d-dimensional Wicner measure and corresponding

path integrals are called Wiener path integrals. Equation (7) specializes to the ordinary
Feynman-Kac formula [12]

(aylexp {—1 (3P° + V() } lq.)

= /C(Rdmdwd[ml 8(x(t) — gy ) exp {— fﬂt dt’ V(m(t’))} . (10)

The relation to the intuitive Feynman-Kac formula (1) is brought to light by identi-
fying the formal expression

t N2
Dz exp{—%f dit’ (g—;’—) }
2 Jo ‘

with dW¥[z] and noting that the Dirac delta function pins the paths at time ¢
at position gq,. The contributions from the paths at times larger than t give a
multiplicative factor 1 because of the Markov property and the fact that the Wiener
measure is normalized to unity. Therefore, the path integrals in (10) and (1) give the
same result, even though the paths in (10) arc open ended and the paths in (1) are
considered—at Jeast in the constructions of many physicists [1]—to stop at time ¢ at
position g;. It is this conceptual difference that allows (or the rigorous implementation
of path-dependent time transformations in path integrals with open-ended paths as
in (10). See section 5.

3. Bessel processes and radial path integrals

In this section we will consider an important (amily of Markov processes with the
positive Euclidean half-line as its conliguration space, that is, @ = R_. To this end
let » > O be a real number and let f, denote the modified Bessel function of the
first kind with index v [35]. We define a transition density on R, by

LAY )+ q* q'q
bgy)(q’,q):z (IT ((Z_l) exp{—gl—)f]—} {, (—lt—) . ¢ €R, . 1y

The reader may check that (11) satistics all properties (i)—(v) of a Markov semi-
group. This transition density characterizes the Bessel process with index v, cf. [23,
p 415]. The induced measure d B, on C([F,,q,) is called a Bessel measure and
corresponding path integrals are called Bessel path integrals.

There is a relation between the trunsition densitics of Bessel and Wiener pro-
cesses [36]

WG gy = [y (') (12

which is valid for d 2> 2. Here ¢ (resp. ¢ ) is the Euclidean norm |.| of ¢ (resp. q* )
and {dQ,. stands for the integration over the unit sphere in R4 of the variable ¢'.

N
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The relevance of Bessel processes is revealed by the following: Equations (5) and
(12) show that the Wiener path integral of an isotropic functional F [|.]] on C(R?, q,)
is equal to its Bessel path integral with index d/2 -1

[, awial Fllel= [ dBusalel Fldl a2 a3)
C("‘r‘!n) C(m..‘.,q“)

In this sense a Bessel path integral with index d/2 — 1 appears as the radial path
integral of a d-dimensional Wiener path integral.

An example of an explicitly solvable Bessel path integral is that relating to the
harmonic oscillator with frequency w > 0

jC(lb,,qq)dBy [z] 6 (2(t) — q,) exp {--f;./ot dt! a:z(t")}

FAPER N 4 .
=g ) =
b\gq,/ sinh{wt)

X exp {—i:— (g2 + q,°) coth(wt)} I, (_wﬂ.q._a._) ) (14)

sinh (wt)
For v = d/2 - 1 the calculation can be done by applying (13) and integrating out
all angular dependencies of the weil known propagator of the isotropic harmonic
oscillator in R? [1, 12, 13}. Not surprisingly, the result obtained thereby remains true
for general v. This is shown in [23, p 430 (3.3)]. (Of course, one could also check
the appropriate differential equation.)
We finish our introduction to Bessel processes with the following:

Statement 1. Ler p,v 2 0 be real numbers and let F, : C(R,,q,) — R be a
functional depending only on the paths up to some time { 2 0, then

[ 4Bl Flal
C(]tha)

(15)

Statement 1 will be shown in appendix 1 in an elementary way for functionals needed
in this paper, that is, for Feynman-Kac functionals

Fi[x] = é(e(l)— q,) cxp {—f dit’ V(a;(t'))} . (16)

0

The general result is found in [29] and |23, p 419 (1.22)].

In view of (13) the occurrence of the exponential factor in {15) can be understood
physically from the fact that the radial motion of a free particle in R4 with given
angular momentum \/I(I + d — 2) is the same as that of a free particle in R4T#
with zero angular momentum. Mathematically speaking, the exponential factor is the
Radon-Nikodym derivative of the two Besscl mcasures involved—the analogue of
the Jacobian in ordinary integration thcory. In combination with (13) statement 1
gives meaning to intuitive manipulations of radial path integrals (see e.g. [3, 8]). In
particular, it is important for applications when one wants to eliminate (or create)
inverse-square potentials by changing dimensions, that is, by changing the index of a
Bessel process.
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4. Application: elimination of inverse-square potentials

We consider a particle on the positive Euclidean half-line @ = R, under the in-
fluence of the potential V(¢) and an additional infinitely high potential barrier at
the origin corresponding to a Dirichlet boundary condition. Denoting the standard
Hamiltonian 15+ V'(§) subjected to this boundary condition by Hp, a path-integral
representation of the corresponding propagator reads

(@l exp {~tHp }a,)

_ % o 8t — o) exnd - [ ay ml
—qbfcm'qn)dBl,g[]éu(t) ») xp{ /o““ V(:c(t))} a7)

There are two ways to understand the validity of (17). First, we remark that

(a/a) 8¢, q) = wi(g' q) - wi(~¢' q) (18)

is the (non-normalized) transition density on the half-line obtained from the one-
dimensiona]l Wiener process by the method of images [32]. It embodies the absorbing
character of the boundary condition, that is, it ensures that almost all paths do not
hit the origin. For the details and more gencral boundary conditions, see [37].

Second, one can start from (7) with @ = K, and dM = dB,,,. By following
the lines in appendix 1, one writes the required penerator of the Bessel process with
index 1 as £ g$*G~' and transforms (7) into (17).

Let us now consider potentials of the form V(g) = U(q) + g/(24?), where U(q)
is less singular than 1/q? at ¢ = 0 and g > —% to prevent the particle from ‘falling
to the center’, see [38, 39]. Then (17) and statcment 1 imply for all v > 0

(QHGXP{—iﬁb}ImJ

v+1/2
_ (ff_) f 4B, [c] 6(x(t) - g,)
7 C{Ry,q,}

xexp{—]ﬂtdt’ (L"(:{'(i’))ﬁ-%)}. a9

To eliminate the 1/x%— term we choose v such that

v=1/g+i. (20)

Thus it remains to calculate the path integral

/C(RJ“%] dB, [»] 8 («(t) —q;} exp {-—jﬂ dt’ U(x(t ))} 21

for v determined by (20).

The simple example U(g) = $w?q? , w > 0, is of some interest, in part because
the resuiting potential V/(q) arises from the scparation of an exactly solvable three-
body problem [40], in part because it arises in the angular momentum expansion of
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the propagator of the isotropic harmonic oscillator. The corresponding path integral
(21) was already given in {14). Hence we obtain the final result

1. 9, .2
{gs] exp {";t (p* + ¢ + g/q‘)D} |,

— 1/2 b
= (@%9a) sinh(wt)
W 7y wqyq '
X exp {-—E (a0, + q, )Loth(wt)} I\/9+i/4 (sinh (ujt)) . (22)

This is in agreement with earlier intuitive calculations [3, 8, 25, 27], which, how-
ever, identify Bessel functions by their asymptotics or require ‘proper time-slicing
corrections’,

As an aside we mention that an explicit cxpression for the Green function of
(#* + w?§% + g/4*),, can be obtained by Laplace transforming (22) with the help
f {35, formula 6.669.4]. For the final result see c.g. {3].

O v~

5. Path-dependent time transformations

With the help of path-dependent time transformations certain path integrals which
cannot be evaluated directly are changed into those which are already known. The
basic ideas are as follows: In analogy to the change-of-variable formula in ordinary
integration theory, one hopes that an unknown path integral

/ d M[x] Fle)

can be related to a known one by a change of path =(t) = (Ny)(t). However,
this so called space transformation does not only change the functional F[z] (to
F[K'y]), but also the measurc d A7, If it simplifies the functional, it may makc the
measure more complicated and nothing is gained. This is where path-dependent time
transformations come in. The idca is to think ol the paths Ky being parametrized by
a different time s and set @ = T 'y, where 7' is a path-dependent time transformation
which reparametrizes each path ( A'y)(s) individually in terms of the original time
t. Again, T affects both the functional and the measure. The trick is to find a
pair of space and time transformations which simplifics the functional and leaves the
measure sufficiently simple.
The analogue of the change-of-variable formula is the path-integral identity

fdM[:::] Flz] = ] AN[y] FITKy) (23)

where d M now appears as the image of another measure d N under TH. Tt is
the central point, because it relates the known to the unknown path integral, an
observation due to [20]. We call (23) the transformation identity.
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Now two questions have to be answered:

e Given the measure d N and the transformations K and T, is there a simple
condition on the transition density m, underlying the measure d M from which
onc can infer that the transformation identity (23) holds? The answer will be
presented in section 5.2.

e How to proceed with (23) in typical quantum-physics applications? Actually, this
is not quite as simple as one might hope and we postpone the answer to section
5.3.

Let us first describe the transformations in detail. For a summary of notation see
table 1.

Table 1. Summary of notation for path-dependent time transformations

Coniiguration Elements Path space Path Measure Comment
space
R r.r C(R,ra} y(s) dN known
Q QIq' C(ana) (]"y)(s)
g9 (R, ¢a) z(t) dM unknown

3.1 Space and time transformation
We consider a point transformation & from one configuration space R onto another
configuration space Q

k:R—Q r—g= k(r). 24)

We assume &k o fulfil the following condition:
(C1) k is smooth and onto, that is A(R) = Q.

Clearly, the point transformation A induces a path transformation /' from the
path space C(R,r,), supposed to be cquipped with a measure d NV, onto the path
space C(Q, k(r,))

K:C(R,r,) — C(Q,4,) y(s) — (Ky)(s) (25)
according to the definitions
(Ky)(s):=R(y(s)  dq:= (Ky)(0) = k(r,). (26)
In the following we will refer to the path transformation K simply as the space
transformation (induced by k).
Besides k we consider a non-negative real-valued function 7 defined on the con-
figuration space Q. Given this function we assign to each path 'y parametrized by

time s a new individual time ¢y ,(s) depending on the path’s history up to time s

tl{y:IR+—4[R+ .Sl—'|!=t1(y($) (27)

N
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by defining

O fo ds’ T((I\"y)(s’)). (28)

Since T is a local function of the paths Ny, some authors speak of a local time
transformation. To allow the interpretation as time, v must be defined in such way
that 1, (s) fulfils two natural properties:

(C2) tr,(s) is strictly increasing in s
(C3) lim,_ o tg,(s) = co.

These two conditions are meant to hold for almost all paths y, that is, for all paths
except for a set of paths of d N-probability zero. Condition {C2} allows to express the
time s in terms of the time ¢, that is, for cach path A’y there exists an inverse mapping
8x,(1) with the property ¢y, (s,,(t)) = t. Now we can reparametrize each path
(Ky)(s) in terms of its individual time ¢, (s). This is a path transformation T
from the path space C(Q, q,) onto itself, mapping the paths (K y)(s) to the paths
z(t)

m RN T~ FAY
1z

(s)—2(t):=(TKy}i) (29

(3]
0

10(Q,q,) —C{(Q,q,})  (Ny)

defined by

(TRy)(1) := (Wy)(s,, (). (30)

In the following we will refer to the path transformation 7 simply as the path-
dependent time transformation (induced by r).

Combining both translormations we get the link between the paths of the known
and the unknown path integral

T :CR,r,) — C{Q.q,) y(s)—z{t) = (TKy)(t). (31)

Let us take the hydrogen atom as an example [20]. The space and time transfor-
mations may be defined by

2 a b
ri - -3+
E:R' —p3 q=k{r}= 2r 1y — 2ryTy (32
2riry + 2y

and 7(g) = 4|q|. Both transformations datc back to [41]. The paths denoted by y(s)
correspond to the harmonic oscillator in four dimensions, the ones denoted by «(t)
to those of the hydrogen atom. The measurcs d ¥V and d A are the Wiener measures
dW* and dW? on C(R*,r,) and C{IR3,q,), respectively.

nsformation identity

The content of the following statement is that the transformation identity holds if it
holds for the ‘free particle’. This condition, called (C4), is elementary to check in
the sense that no specific knowledge of stochastic calculus is needed. An elementary
proof is given in appendix 2.
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Statement 2. Let AN and d M denote measures, associated with Markov processes, on
the path spaces C(R,v,) and C(Q,q,), respectively. Let K and T be space and time
transformations satisfying conditions (C1), (C2) and (C3).

If for arbitrary r € R , ¢' € Q and for all i the condition

€ [, ME - = [ ans((TR @ -a)

is fulfilled, then the transformation identity holds (with q, = k(r,) )
/ dM{z] Flz] = / dN[y] FITKy] (33)
C(quﬂ ) o \Ta )

for a wide class of functionals I : C(Q,q,) — R

We stress that the path dependence of the ‘pinning time’ sy, (¢) on the RHS of
{C4) causes no problems, because we consider only normalized measures on open-
ended paths. Statement 2 can be considered as the basis of a calculus for path-
dependent time transformations in path integration without the need to fall back
at each step to discretization prescriptions. It may be used to supply rigour to
transformation ideas and their recipe-like application in path-integral calculations.

By setting V' = 0 in (36) below, the Laplace transform of (C4) is seen to be

() [ ateBtm ko =r(a) | Tasf AN 8 (k(ut) - )

X exp {E/OS ds’ r(k{y(s')))} .

By the invertibility of the Laplace transformation {C4') is equivalent to (C4). It is
(C4') which, in applications, is often easier to check.

We remark that within the theory of stochastic differential equations there exist
other criteria (replacing (C4)) which lead also 1o the transformation identity, sce e.g.
[16-22].

5.3, Calculation of the Green function

In this subsection we are interested in the consequences of the transformation identity
(33) for Feynman-Kac functionals (16). As it stands, it is difficult to proceed with
(33) as a path-integral representation [or the propagator because there occur path-
dependent s-times on its RHS. It is only by fixing s-times that one can proceed with
the calculation of the path integral. Accordingly, we are going to perform a Laplace
transformation of (33) in order to get a path-integral representation for the Green
function. TO this end we multiply both sides by exp{ [t} and integrate over positive
t. By (8) and (7), the LHS is immediatcly identificd with the Green function of
H =T, 4+ V(§) and (33) takes the form

(Qb?(ﬁ - E)7 g,
=/ dtegimﬂd]N[yl6((A’y)(sf<y(t-)>—qb)

xexp{—/ﬂtdt' V((l\"y)(sh-y(t')))}. (34)
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The important step to make next, is to substitute s for sy, (¢) and s’ for s, (')

inside the path integral (note that properties (C2) and (C3) are used). Thus we arrive
at

{@l(T — E)Yq,)
= -/(;(R'rﬂ)dN[y]-/; ds T'((I(y)(s)) eE!Ky(-’) 6((!(’_!;)(3) — QB)

X exp {‘_ /08 ds’ "r(( I\'y)(s’)) Vv ((Ky)(s’))} . (35

Summarizing and recalling the remark made below (8) concerning the allowed values
E of the energy, we have shown:

Statement 3. The transformation identity (33} implies the following path-integral rep-
resentation for the Green function of the Hamiltonian H = T + V(§) (recall the
one-to-one correspondences T, — m, — dM and that k(r,) = q, )

(@l(H - E)'q,)

=rta) [as [ vt e(kws) - a)
X exp {]0 ds' T(k(y(s'))) [E - V(k(y(s’)))] } : (36)

In consequence, the representation (36) is valid if the conditions (C1), (C2), (C3)
and (C4') are fulfilled. This is useful for applications in quantum physics.

The explicit evaluation of the path integral in (36) needs a substitution inside the
delta function §(k(y(s))— ¢;). This requires a closer Jook for mappings & which are
not one-to-one, as is the case, for example, for the hydrogen atom [20].

6. Application: Green function of the one-dimensional Morse system

In this section we dpply statements 2 and 3 to calculate the Green function of the
Morse system. This is a very illustrative example, because it requires also techniques
from sections 3 and 4.

We consider a particle on the Euclidean line I under the influence of the potential

V(g) = Vj (e™* — 2ve™2"1) Ve >0 a,yER a#0. (37

This defines (for 4 = 1) the Morse system [42}. Since the corresponding Hamiltonian
is H = Lp? + V(§), the associated Markov process is the one-dimensional Wicner
process. Recallmg the Feynman-Kac {ormula (10) we can represent the Green func-
tion of the Morse system (for £ < —~*V)) as

(‘IbI(H - E)_II(Ia)

=/U°odte /L[R ,.d”ﬂ[ xl §(x(i) — qy) exp{ /dt Viz (t))}

(38)
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In order to calculate this non-Gaussian path integral we consider the path space
C(R,,r,) equipped with the measure d N = d B, and perform a suitable space and

time transformation to the path space C(R, g,) with the measure d M = dW! of the
Morse system

TK :C(R,.7,) — C(R,q,)  y(s)m a(t) = (TKy)(1). (9

Following (43, 44], we choose

q:k(r):—a"'lln r (40)
and

r(q) = a~? 209 (41)
hence

trey(8) = a? ./Us ds’ y=2(s"). (42)

According to (31} we pet the combined transformation
2(t) = (Thy) () = (Ny)(sy,(1}) = —a™ In y(s, (). 43)

We will show in appendix 3 that these transformations satisfy conditions (CL) to (C3).
In addition, we will show there that (C4) holds. Hence, statement 2 leads to the
useful transformation identity

] AWl Flel= [ 4Byl FITK) (44)
C(R,qq) ClR4,7,)

where F may be a fairly general functional on C(R, ¢,). It is the central point of
this section.
By statement 3 the Green function of the Morse system can be represented as

(ol (H - E)q,)

oo
== [Caset [ B ] bu) - )
talry Jo C(R4,ra)

% exp {——% '/03 ds’ (wgy:'(.s') + ﬁﬁ)} (45)

where we have introduced the non-negative quantities

9 2K
= 2} and vis= /- % (46)

84 [

o

(K]
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(,/~ denotes the principal branch of the square root) and used the change-of-variable

formula for the delta function. Moreover, one should note that r, = e~%9s and

Ty = e %9, . .
This is the point where statement 1 comes in. In order to eliminate the 1/y?

term in (45) we proceed as in section 4 by applying statement 1 with 4 = 0. This
gives

! jwds e’ (T“)Vf 1B, [y] & (y(s) )
= ¢ y y(s)—r
|a!rb 0 rb c(lt+!"a) v ) ’

w? f* 0,
Xexp{——z—-/o. ds’ y“(s)} 47)

for the Green function. By (14) and after performing the final s-integration with the
help of [35, formula 6.669.4], we cnd up with

(@)(H - E)'q,)

F(Hv-—yw+1)) e {artaa)
lafw I (v 4+ 1)

X {@(a(q“ - q,,)) Wawra, vie (we=2am) M2, ep (we™2s)

+ (g, — qb)}' (48)

Here © denotes Heaviside’s unit step function with the convention ®(0) := 4, T
deniotes Euler’s gamma function, and A, , and W, , denote Whittaker’s functions
[35, p 1059]. This exact result for the Green functlon of the Morse system agrees
with that in [3], but differs more or less from other results [6, 43]. All these results
were obtained by intuitive path-integral calculations.

For completeness and convenience of the reader we present the discrete elgenval-
ues £ and corresponding normalized cigenfunctions v, (q) (existing for vw > 1)
of H as obtained from the poles and corresponding residues of (48)

Bo=-3aw,)?  w(0) = 2l oy (we™e) )
A a PEA DN e e
el = (gt et e 1l €0 50

Here L{“) denotes a generalized Laguerre polynomial {35) and »n is any non-negative
mteoer such that

v,o=qw=2n-12>0. (51)

These eigenvalues and eigenfunctions generalize results of [45}, where the case v =1
was treated by operator methods,
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7. Concluding remarks

We bave presented two well-founded and practical techniques of how to perform
changes of dimension and path-dependent time transformations in path integrals.
Thus, rigour is supplied to earlier ideas for the evaluation of certain non-Gaussian
path integrals. The power of these techniques has been illustrated by two standard ex-
amples of quantum physics. We hope that we have thereby contributed to remove the
uneasiness many people have felt about the recipe-like way in which these interesting
ideas were applied previously.

We claim that all examples treated within the intuitive approaches are covered
by the techniques presented in this paper, possibly with an extension of statement 1
to other families of Markov processes. Here we only mention the Péschl-Teller and
Rosen-Morse systems in addition to the examples mentioned above.

Clearly, it is interesting to see how the techniques described work in the calcula-
tion of propagators or Green functions for such one-particle quantum systems. Even
50, one must not overestimate the value of path intcgration for obtaining these types
of results, because they can often be obtained more directly with other methods (op-
erator theory, stochastic differential equations). In our opinion, the real efficiency of
path integration manifests itseif in tackling other problems. For example, path inte-
gration may serve to provide new estimates and controlled approximations [12, 13, 47]
which are hard to get otherwise as is the case for the celebrated polaron [1, 13, 48]. It
would be nice to extend the ideas underlying the above techniques to this and other
non-Gaussian and effectively non-Markovian situations.
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Appendix 1. Proof of statement 1 for Feynmun-Kac functionals

We assert first that the operator Tu = TW) = %{;32+i(2u+ 1)p rj"l} is the
generator of the Bessel process with index v, see also [46, p 60], that is

(¢'|exp{—tT,}a) = (¢, q). (52)

This can be shown by verifying for (11) the (Fokker-Planck) equation

4 8% 8 w41
=t — (CF
b (¢'.q)= (8(1"“ 7 ) by (', q) (33)

and observing that the differential operator on the RHS is (except for an overall sign)
the action of 7, in position representation. Not¢ that for v = 4/2 — 1, this is one

"
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half of the adjoint of the radial part of the d-dimensional Laplacian. Hence, we have
according to (7)

/c:(n+,q)dBv [z] 6(z(t) —q') exp {—f; dt’ V(iﬂ(i'))}
= (q'|exp {—t (T + V(@))} |q

=(Q’lexp{ tgiv =) (T + 2

W) v

G
= {¢'l¢"" "M exp {—t T, +2 L+ V() )} j~ (" ¥lq)

(O 4Bl s -0

\ g } Jcm+.q) #

xexp{—-fotdt' ()2‘,—”4-\/(14(1‘)))} (54)

For the second equality we have used the commutation relation ¢ — p¢ = {. This
completes the proof of statement 1 for Feynman-Kac functionals (16).

Appendix 2, Proof of statement 2

This proof is patterned after the so-called computational proof in [20]. It is sufficient
to show

»

j, dM([2] 6(e(t,) = ay) . .- 6(x(1,) = ¢n)
C(Q,9q)

= / AN[Y] ((TRY)(t) - a,) -6 ((TE(L,) —a,) (55

C{R,ra)
because this implies (33) for cylindrical functionals f, and hence for fairly general
functionals F. Without loss of generality, we may assume 0 < &) < 1, < ... < 1.

By the Markov property (4) the path integral on the LHS of (55) factorizes into the
product (with g, := q, and 2, := 0)

jc‘:(o.q,_.]‘dM[:U] 6('”“:’ _tj~1)“q_,-). (56)

Using for each factor in (56) condition (C4), cquation (55) is seen to be equivalent
to the equation (note that q; = &(r;))

.[cm',.u)dN[y] 6(( Ky)(sg,(8)) = fh) .
X jcm‘r" l)dN[y] 6(( Ky)(spe,(ty = 1 1)) — qn)

= /CmmdN[y}5((1\'y)(s,<y(tl))_ql)
x 8{(Ky)(s1¢,(ta)) = ) 7
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We will prove (57)—a consequence of the so-called strong Markov property—by
showing that the n-dimensional Laplace transforms of both sides with respect to the
difference times ¢} :=t,, ¢} :=t;~t;_;, j = 2,...,n are equal. For the transform
of the RHS of (57) we obtain

wadt' / a1’ exp !Y‘“_,Et Vo any
o

= Jemo

x 8((K )50, ()~ 01) - 6 (Ky)(5 ey (Tiesth)) = 4

:/ ds; 7{q,) f (Is'nr(qn)] dN[y]
0 0 C(R,7a)

x exp { Eitge,(s1)) 5((1\"3})(3’)—(11)

X exp {E (;\y(Za 151~ e (i s )} ((Ky)(E; 151)— qn)
(58)

In the last step we have substituted

e— P J
s) = SKy(t'l) s; 1= .sKy( ot — 33‘—1 7

2,...,.1m

and used (C2) and (C3). The integrand of the last path integral is a product of
n functionals, the jth factor of which depcndmg only on the values of the paths
between the times Z{ -)'s) and YJ_, s}. Hence, by the Markov property, this path
integral factorizes, giving

fom ds) r(gq,) ...-/ood.s'n 7(q,)

x f dN{y] exp { £y15,(s7)} 5((1(y)(s'1)—q1)
Jeir ra) A 4

X /;[R.rn_;)dN[y] exl){ nthy )} 5((1& yi(sh) — ) (59)

But this is exactly what is obtained when taking the n-dimensional Laplace trans-
form of the LHS of (57) with respect to #; (as defined above) and substituting

8; 1= spc, (1)

Appendix 3. Check of conditions (CI) to (C4) for the Morse system

—d W lea

We want o apply statement 2 in order 10 prove (34).
conditions (C1) to (C4):

Condition on the space transformation (40):

{C1) Clearly, k is a smooth mapping from R, onto R.
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Conditions on the time transformation (42):

€2
(C3)

Obviously, ¢, (s) is strictly increasing in s.
Observe that

tKy(s)za_qusds' 01 ~ y(s)). (60)

Since by definition and (13) the paths y realize the radial part of a two-
dimensional Wiener process, it follows from [12, theorem 7.13] that the RHS of (60)
tends to infinity as s — oo for almost all y.

Condition of statement 2:

(C4)

r

The

Equivalently we will show (C47), that is, the equality

dt e wi(—a 'In+', ~a"Inr)
1 /°° / , s ds
= — ds dByly] 6 {(y(s)—r") ex {E]—-—-—-—— .
e[ So C(Ry . olvl & (u( P o a?y3(s’)
(61)

Laplace transform on the LS of (61} can be donc wsing [49]. Tob calculate

the RHS we use statement 1 to eliminate the potential term. The resulting ‘free-
particle’ Bessel path integral yields the transition density (11). The final s-integration
is performed with the help of [35, formula 6.623.3], thereby completing the proof of

(61).
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