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AbslrncL In a reasonably self-contained presentation mathematical rigour is supplied 10 
the impanant ideas of solving cenain non-Gaussian path integrals by changes of dimen- 
sion and/or path-dependent lime transformations. The mul l ing genuine path-integral 
calculus neither requires discretiralion prescriptions nor sopbisticaled methods from the 
lheozy of ~ t ~ ~ l i a ~ l i ~  differential equations. The pawer of the calculus is illuslraled bj 
WO standard quantum-physics applications. First, the lillculation of the time-dependent 
propagator corresponding 10 a p t l i c l c  on the half-line in a harmonic plus inversequare 
p ten l ia l  is shown to k a simple exercise. Second. the fin1 "gorow derivation of lhe 
energy-dependcnt Green function of llir one-dimensional Morse syslem is given. 

1. Introduction 

The  dynamical properties of a quantum mechanical system governed by a standard 
Hamiltonian fi = ip' + V ( q )  can be cxpresscd in terms of the imaginary-time or 
Euclidean propagator. (Here and in the following we will use units such that the mass 
of the particle and Planck's constant f i  are equal to one.) In Feynman's formulation 
of quantum dynamics [l] this propagator is rcprcsented by a sum over histories or  
path integral 

I 

Dxexp  { - ;1 = 

, 
- (O)=q.  

Let us call (1) the intuitive Feynman-Kac formula. It has been known for a long 
time that Gaussian path integrals, corrcsponding to quadratic potentials V ,  can be 
calculated explicitly. However, i t  is only in the last two decades that techniques for 
the calculation of certain non-Gaussian path integrals have appeared in the literature. 

This paper is concerned with two of these techniques, namely path-dependent rime 
lransfornialions and changes of dinlension. While the first technique may be considered 
as an analogue of changing variablcs in ordinary (Riemann, Lebesgue) integrals, the 
second one is comparable to relating ordinary integrals in different dimensions by 
exploiting a symmetry. 

In the literature path-depcndent time transformations are approached in two 
different ways. The  intuitive approach initiated by [Z] in 1979 'in a very formal way', 
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see the preface in 131, but further elaborated by e.g. [3-111, relies on somewhat ad 
hoc discretization prescriptions of (1). Not unexpectedly, this approach runs into 
severe but artificial dilliculties. This is because these authors never use a bona fide 
measure on the path space, which in case of (1) is the well known Wiener measure, 
see e.g. [12, 131. Accordingly, some of them [8, 14, 151 understand their approach 
partially as a recipe to obtain results which have to be checked by operator theory 
in case of doubt. Clearly, this has led to some confusion in the physics community. 
Even in a recent textbook [3] whole chapters are devoted to ‘time-slicing corrections’ 
and ‘stabilization procedures’ invented to avoid a ‘path collapse’ which in reality does 
not exist due to the stochastic nature of the paths. 

The rigorous approach to path-dependent time transformations in path integra- 
tion-inspired by [2]-was initiated by [16] and further elaborated by [17-221. It 
can be reduced to a theorem of Dambis, Dubins and Schwarz (1965) in the calculus 
of stochastic differential equations, see e.g. [23]. These works have not received 
the attention they deserve, in part because many physicists seem to be not sulficiently 
familiar with the calculus of stochastic differential equations, in part because physicists 
want to have a genuine path-integral calculus at their disposal. Fortunately, the basic 
ideas for such a calculus can be extracted from a recent work [20] containing a 
rigorous path-integral calculation for the hydrogen atom without using sophisticated 
methods from stochastic calculus. 

It is one of the two main goals of the present paper to isolate the key points 
of these ideas, elaborate on them and extend them to more general situations. This 
will be accomplished in an elementary way. The resulting path-integral calculus is 
rigorous in the sense that the missing details (specilication of domains of operators 
etc.) are only of a technical kind and can bc supplied with additional effort. 

Concerning the change-of-dimension technique a similar distinction between an 
intuitive and a rigorous approach can  be made. The intuitive approach is based 
on certain discretization prescriptions for radial path integrals [24-261. The change- 
of-dimension technique within these prescriptions can be traced back to [25] where 
centrifugal barriers are treated. I t  has been further elaborated by e.g. [8, 9, 271. 
Problems due to the discretization are discussed in [3, 8, 281. 

It is the other main goal of the present paper to develop a rigorous approach 
to the changeuf-dimension technique in radial path integrals, which is based on the 
Radon-Nikodym derivative of a Bessel measure with respect to another one [23, 291. 
This approach was hinted at in [8, 211. &din, we will give an elementary proof of 
the key result using neither discretization prescriptions nor stochastic calculus. 

The paper is organized as follows. In section 2 we introduce our notation and 
a measure-theoretic definition of path integrals with respect to a general Markov 
process. Section 3 introduces Bessel path integrals as generalized radial path integrals 
and provides the rigorous tool (statement 1) for the change-of-dimension technique. 
In section 4 the explicit path-integral calculation of the propagator corresponding 
to the standard example of a harmonic plus inverse-square potential is shown to 
be an immediate consequence oC statement 1. Section 5, which is independent Of 

sections 3 and 4, presents the formalism of path-dependent time transformations. Its 
main results, statements 2 and 3, constitute thc basis of a well-founded and practical 
calculus for path-dependent time transformations in path integration. In order tO 
illustrate the power of this calculus in typical quantum-physics applications we give. tO 
our knowledge, the lirst rigorous derivation of the energy-dependent Green function 
of the Morse system in section 6. This needs techniques from both sections 4 and 5. 
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Elementary proofs of the statements can be round in appendices 1 and 2. Appendix 3 
checks some conditions needed in section 6. 

2. Basic notation, Markov processes and path integrals 

In the following it is essential that we do not only deal with Wiener path integrals, 
that is, integrals over paths of the Wiener process (or Brownian motion) in the d-  
dimensional Euclidean space Rd.  Instead, we will also consider integrals over paths 
z ( t )  in a configuration space Q(r: R d )  realizing a more general continuous stationary 
Markovprocess. Such a process is a collection of random variables indexed by positive 
time 1 E IW, and taking on values in Q. It is characterized by a lransirion densiry 
m,(q' ,q),  which is the probability density for going from position z ( t o )  = q E Q to 
psition " ( to  + 1 )  = q' E Q during time t independent of 1,. The transition density 
satisfies the natural properties of a continuous Markov semi-group: 

(1) m,(q',q) 2 0 

(U ) J, d d  I n , ( q ' , q )  = 1 

(iii) lim m,(q',q) = S ( 9 ' -  q )  
t l o  

Throughout this paper we will assume that all paths start at time t = 0 at some 
position qa E Q, that is z(0) = q,. 

By Kolmogorov's extension theorem 112, 301 the transition density mi induces 
a unique measure dM, which due to (v) is concentrated on the set C ( Q , q a )  of all 
conrinuous paths starting at q, (see e.g. [31]). This path measure represents the joint 
probability distribution of the Markov process. We stress that all paths in the path 
q a c e  C( Q, q.) are open ended. 

Given the measure dM,  one can define apulti integrul 

of a numerical functional f? on C ( Q , q , ) ,  that is, a weighted sum or mean of the 
values F [ z ]  over all continuous paths x ( f . )  starting at qa. Two simple and explicit 
examples are 

and 

d M [ r ] S ( ~ ; ( t , ) - q , )  . . .  6 ( . ~ ( 1 ,  
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where 0 < t, < 1 ,  < . . . < t , .  While the first example is just the normalization of 
the measure, the second one is a path-integral statement of the Markovpropeq. 

For a cylindrical funclional f,,, that is, a functional depending only on the positions 
of the paths at a finite number 1% of given times 0 < t ,  < 1,  < . . . < t,, the Markov 
property immediately implies 

(5) 

Since n may be arbitrarily large, the value of the path integral of a fairly general func- 
tional F can be approached by suitable limiting constructions. This is the strategy of 
general integration theory. It is also at the bottom of most path-integral constructions 
used by physicists [l, 321. 

For a given Markov process (with transition density ml )  there exists a unique 
generator or ‘free-particle energy’ operator acting on a suitable class of numerical 
functions defined on e. Using Dirac’s notation for the integral kernel or the position 
representation of an operator, the relation between the transition density of the 
Markov process and its generator can be written as 

(4 ’ Iexp{- tFna} Iq)  = n L , ( q ’ . r l ) .  (6) 

This relation may be viewed as the ‘free-particle’ limit of the generalized Feynman- 
Kac formula [33, chapter 5 ,  theorem 7.61 

Here V( 4) is a sufficiently well-behaved real-valucd ‘potential-energy’ function on Q 
and V ( 4 )  the corresponding multiplication operator, which, when added to f,,,, gives 
the ‘total-energy’ operator or Haniillonian l? := f’,,,, + V ( 4 ) .  

A derivation of (7) follows from (5) and (6) by a suitable sequence {f,,} of 
cylindrical functionals. In quantum physics the LHS of (7)  is usually called the time- 
dependent Euclidean propagalor of H ,  It  is uniquely related to its Laplace transform 

N 

( q b l ( l j  - E I - ~ I ~ ~ )  = 1 d t  (rlblexi) { - t ~ >  Is,) (8) 

which is called the resolvent kernel or energy-dependent Green funclion of H .  For 
nearly all if of interest in quantum physics the Green function is analytic in the 
energy variable E,  if E is not in the spectrum of fi (see [34, theorem VIII.21). As 
it stands, the integral in (8) makes sense only for values of E with a real part less 
than the lowest spectral value of fi, Nevertheless, its analytic continuation to other 
values (not in the spectrum of if) coincides with the Green function. 

Let us now have a look at the most important example of a Markov process, the 
Wienerprocess in Q = LEd. It is characterized by the transition density 
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and its generator is the ordinary 'kinetic-energy' operator $$, where the momentum 
operator p := -i $ is the  gradient divided by the imaginary unit. The induced mea- 
sure dWd on C ( W d , q , )  is called d-dimensional Wiener measure and corresponding 
path integrals are called Wienerpalh infegrals. Equation (7 )  specializes to the ordinary 
Feynman-Kac formula 1121 

1 

= C(Bd,,?.) d W d [ z ] 6 ( z ( t ) - q b ) c x p { - ~  d t ' V ( z ( t ' ) ) } .  (10) 

The relation to the intuitive FeyIn"-KdC formula (1) is brought to light by identi- 
fying the formal expression 

with dWd[z]  and noting that the Dirac delta function pins the paths at time t 
at position qb. The contributions from the paths at times larger than t give a 
multiplicative factor 1 because of the Markov property and the fact that the Wiener 
measure b normalized to unity. Therefore, the path integrals in (10) and (1) give the 
same result, even though the paths in (10) arc open ended and the paths in (1) are 
considered-at least in the constructions of many physicists [l]-to stop at time t at 
position qb. It is his conceptual difference that allows lor the rigorous implementation 
of pathdependent time transformations in  path integrals with open-ended paths as 
in (10). See section 5. 

3. Bessel processes and mdiiil pith iiitegriils 

In this section we will consider an important lamily of Markov processes with the 
positive Euclidean half-line as its conligiiration space, that is, Q = R+. ?b this end 
let v > 0 be a real number and let I,, denote the modified Bessel function of the 
first kind with index v [?SI. We define a transition density on W, by 

The reader may check that (11) s;ltislich a11 properties (i)-[v) of a Markov semi- 
group. This transition density characterizes thc Bes.x!/ process with index v, cf. 123, 
p 4151. The induced mcasure d E L ,  o n  C(W:+%q,,) is wlled a Bessel measure and 
corresponding path integrals a re  called Bcssd p d i  inre&~a/s. 

There is a relation between the transition densities of Bessel and Wiener pro- 
cesses [36] 

(12) 
b(d/'-ll I s i - 1  dQq,  IUi ( d l  ( q ' , q )  s 1 ( d , q )  = (( / )  

which is valid for d > 2. Here q (resp. q' ) is thc Euclidean norm 1 . 1  of rl (resp. q' ) 
and JdR,, stands for the intcgration over the unit sphere in Ilsd of t h e  variable q'. 
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The relevance of Bessel processes is revealed by the following: Equations (5) and 
(12) show that the Wiener path integral of an isotropic functional F[I.I] on C ( I w d , q , )  
is equal to its Bessel path integral with index d / 2  - 1 

In this sense a Bessel path integral with index d / 2  - 1 appears as the radial path 
integral of a &dimensional Wiener path integral. 

An example of an explicitly solvable Bessel path integral is that relating to the 
harmonic oscillator with frequency w ) 0 

dB,[z] 6 ( z ( t ) - q b )  exp I CP+.9.) 

w w q b q a  
x exp {-T (Vb' + 

C " t l l ( L d l ) )  I ,  ( s inh ( w t )  

For U = d / 2  - 1 the calculation can be done by applying (13) and integrating out 
a!! angular deoendencies of the well known propaytor of the isotropic harmonic 

for general U. This is shown in [23, p 430 (3.3)]. (Of course, one could also check 
the appropriate differential equation.) 

Statement 1. Let p ,  U > 0 be r e d  n~rntbers and let Ft : C(Rt,qa) -+ B be a 
functional depending on& on tbe pirrhs up IO sonic h e  t 2 0, [hen 

oscillator in B d~ [l,  12, 131. Not surprisingly, the result obtained thereby remains true 

We finish our introduction to Bessel processes with the following: 

(15) 

Statement 1 will be shown in appendix 1 in an elementary way for functionals needed 
in this paper, that is, for Feynnian-Kilt functionds 

The general result is found in [2Y] and 123, p 419 (1.22)]. 
In view of (13) the Occurrence of the exponcntial tactor in (15) can be understood 

physically from the fact that the radial motion of a free particle in Rd with given 
angular momentum ,/- is the same as that of a free particle in Id+'' 
with zero angular momentum. Mathcmaticdlly speaking, the exponential factor is the 
Radon-Nikodym derivative of the two Besscl mcasurcs involved-the analogue Of 
the Jacobian in ordinary integration theory. In combination with (13) statement 1 
gives meaning to intuitive manipulations of radial path integrals (see e.g. [3, 81). In 
particular, it is important for applications when one wants to eliminate (or create) 
inverse-square potentials by changing dimensions, that is, by changing the index Of a 
Bessel process. 
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4. Application: elimination of inverse-square potentials 

We consider a particle on the positive Euclidean half-line Q = IW, under the in- 
fluence of the potential V ( q )  and an additional infinitely high potential barrier at 
the origin corresponding to a Dirichlet boundary condition. Denoting the standard 
Hamiltonian ip2+ V(4) subjected to this boundary condition by fi,, a path-integral 
representation of the corresponding propax utor reads 

There are two ways to understand the validity of (17). First, we remark that 

( 4 / 4 ' )  b!"*)(d 14 1 - - l U i l ) ( ' l ' >  Y) - 4 ' ) ( - q ' ,  4 )  (18) 

is the (non-normalized) transition density on the half-line obtained from the one- 
dimensional Wiener process by the mcthod of images [32]. It embodies the absorbing 
character of the boundaly condition, that  is, it  ensures that almost all paths do not 
hit the origin. For the details and more gencral boundary conditions, see [37]. 

Second, one can start from (7) with Q = iR+ and d M  = dB,,?. By following 
the lines in appendix 1, one writes the requircd generator of the Bcssel process with 
index f as q p  q and transforms (7) into (17). 

Let us now consider potentials of the form V ( q )  = L l ( q ) + g / ( 2 q 2 ) ,  where U ( q )  
is less singular than l / q ?  at q = 0 and g 2 -: to prevent the particle from 'falling 
to the center', see [38, 391. Then (17) and statement 1 imply for all v 2 0 

1 . - 2  - - I  

lb eliminate the I / X ? -  term we choose U such that 

u = J z q  

Thus it remains to calculate the path intcgrdl 

for U determined by (20). 
The simple example U ( q )  = ?w2q2 , w 2 0, is of some interest, in part because 

the resulting potential V (  q )  arises from the separation of an exactly solvable three. 
body problem [40], in part because it arises in the angular momentum expansion of 
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the propagator of the isotropic harmonic oscillator. The corresponding path integral 
(21) was already given in (14). Hence we obtain the final result 

This is in agreement with earlier intuitive calculations [3, 8, 25, 271, which, how- 
ever, identify Bessel functions by their asymptotics or  require 'proper time-slicing 
corrections'. 

As an  aside we mention that an explicit cxpression for the Green function of 
(p' + w 2 i 2  + g / q 2 ) ,  can be obtained by Laplace transforming (22) with the help 

of [35, formula 6.669.41. For the final result see e.g. [3]. 

5. Path-dependent time transformations 

With the help of path-dependent time transformations certain path integrals which 
cannot be evaluated directly are changed into those which are already known. The 
basic ideas a re  as follows: In analogy to the change-of-variahle formula in ordinary 
integration theory, one hopes that an unknown path integral 

can be related to a known one by a changc of path ~ ( t )  = ( l i y ) ( t ) .  However, 
this so called space rransfomiuiion does not on ly  change the [unctional F [ x ]  (to 
F(ICy]), but also the measure d M .  If it simplXics the functional, it may make the 
measure more complicated and nothing is gained. This is where path-dependent time 
transformations come in. The  idca is to think of thc paths I i y  being parametrized by 
a different time s and set x = T l i y ,  whcre 7'  is a path-dependent h i e  rransfomiation 
which reparametrizes each path (/<y)( A )  individually in terms of the original time 
t .  Again, T affects both the functional and the measure. The trick is to find a 
pair of space and time transformations which simplifies the functional and leaves the 
measure sufficiently simple. 

The  analogue of the change-of-variahle formula is the path-integral identity 

where d M  now appears as the image of another measure d N  under T l i .  It is 
ihe central point, because it relates the known to the unknown path integral; an  
obsewation due to [20]. We call (23) the irmvfbrniolion ideniiy. 
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Now two questions have to be answered: 

Given the measure d N  and the transformations li and T, is there a simple 
condition on the transition density mt underlying the measure d M  from which 
one can infer that the transformation identity (23) holds? The answer will be 
presented in section 5.2. 

0 How to proceed with (23) in typical quantum-physics applications? Actually, this 
is not quite as simple as one might hope and we postpone the answer to section 
5.3. 

Let us first describe the transformations in detail. For a summary of notation see 
table 1. 

Table 1. Summary of naiaiion for path.dependenl time transformations 

Coniiguntian Elemenis Paih space Paih Measure Comment 
space 

5.1. Space and rime transformation 

We consider a point transformation k from one configuration space 72 onto another 
configuration space Q 

k : R - Q  r - q = k ( 7 , ) .  (24) 

We assume k to fulfil the following condition: 

(C1) 
Clearly, the point translormation k induces a path transformation Ii from the 

path space C(R, ra), supposed to bc cquipped with a measure d N ,  onto the path 
space C ( Q , k ( r , ) )  

k is smooth and onto, thdt is k('7?) = 0. 

li : C('R,ra) - C ( Q , q & )  y(s )  h ( I i y ) ( s )  (25) 

according to the definitions 

( I < y ) ( s ) : = k ( g ( s ) )  r/, : = ( / < y ) ( 0 ) = k ( r a ) .  (26) 

In the following we will rcfer to thc path transl'ormation l i  Simply as the space 
transfomiarion (induced by k ) .  

Besides k we wnsider a non-ncgativc real-valued [unction r ,pelined on the con- 
figuration space Q. Given this function we assign to each path l i y  parametrized by 
time s a new individual time t r c Y ( s )  depending on the path's history up to time s 

t,<, : R, - R, s - 1 = t , cy (s )  (27) 
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by defining 

t , , ( s )  := L ’ d s ’  ~ ( ( I < y ) ( s ’ ) )  

Since T is a local function of the paths Icy, some authors speak of a local time 
transformation. Ib allow the interpretation as time, r must he defined in such way 
that t K I ( s )  fulfils hvo natural properties: 

(C*) t l c , ( s )  is strictly increasing in s 

(C3) lim,,m t K y ( s )  = cu. 

These two conditions are meant to hold Cor olmost all paths y, that is, for all paths 
except for a set of paths of dN-probability zero. Condition ( C t )  allows to express the 
time s in terms of the time t ,  that is, Cor cach path I i y  there exists an inverse mapping 
s K y ( t )  with the property tjCy(sICy(l)) = t .  Now we can reparametrize each path 
(ICy)(s) in terms of its individual time t jC , , (s ) .  This is a path transformation T 
from the path space C ( Q , q a )  onto itself, mapping the paths ( I r7y)(s)  to the paths 
4 1 )  

(;<y)(s) Y x( i j  := ( T i i y j ( i j  (ZSj 
m ” , A  1 
1 :L(v,qa) - C ( Q , q * )  

defined by 

( T K y ) ( f )  := ( l iy ) (s ,<y(t ) ) .  (30) 

In the following we will refer to the path transrormation T simply as the path- 
dependent t h e  transfortnation (induced by r ) .  

Combining both transformations we get the link between the paths of the known 
and the unknown path integral 

TIi : C(77,  - C( (7, ( I ( , )  ?J( s )  c z( 1 )  = ( T I < y ) ( t ) .  (31) 

Let us take the hydrogen atom as an example [20]. The space and time transfor- 
mations may he defined by 

and T ( q )  = 4191. Both transformations date beck to [41]. The paths denoted by ~ ( s )  
correspond to the harmonic oscillator in four dimensions, the oncs denotcd by z ( t )  
to those of the hydrogen atom. The measures (I A’ and d A4 are the Wiener measures 
d W4 and dW3 on C( N4, T ~ )  and C( w”, q,, ), respectively. 

J .  1. lruru, urmur,un KIcnrlly 

?he mntent of the following statemcnt is that thc transformation identity holds if it 
holds for the ‘free particle’, This condition, called (C4), is elementary to check in 
the sense that no specific knowledge of stochastic calculus is needed. An elementaly 
proof is given in appendix 2. 

e 1  ,n r :... :I .... I... 

a 
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Statement 2. Lei d N and d M denote measures, associared with Markov processes, on 
the paih spacer C(R,T,) and C(Q,qa),  respectively. Let K and T be space and time 
fransfornialions satirfying conditions (Cl), (C2) and (C3). 

If for arbitrary r E R , q‘ E Q and for all 1 h e  condilion 

isfurfilled, hen the transformarion idenlig holds (wiih qa = k ( r , )  ) 

for a wide class of funclionals F : C( Q,  q , )  - W. 
We stress that the path dependence of the ‘pinning time’ sKy(t )  on the RHS of 

(C4) causes no problems, because we consider only normalized measures on open- 
ended paths. Statement 2 can be considered as the basis of a calculus for path- 
dependent time transformations in path integration without the need to fall back 
at each step to discretization prescriptions. It may be used to supply rigour to 
transformation ideas and their recipe-like application in path-integral calculations. 

By setting V = 0 in (36) below. the Laplace transform of (C4) is seen to be 

By the invertibility of the Laplace transformation (C4’)  is equivalent to (C4). It is 
(C4‘) which, in applications, is often easier to check. 

We remark that within the theory of stochastic differential equations there exist 
other criteria (replacing (C4)) which lead also to the transformation identity, see e.g. 
[1&22]. 

5.3.’ Calculalion of the Green Juncrion 
In this subsection we are interested in the consequences of the transformation identity 
(33) for Rynman-Kac Cunctionals (16). As it stands, it is difficult to proceed with 
(33) as a path-integral representation lor the propagator because there occur path- 
dependent s-times on its H i s .  It is only by lixing s-times that one can proceed with 
the calculation of the path integral. Accordingly, we are going to perform a Laplace 
transformation of (33) in order to get a path-integral representation for the Green 
function. Tb this end we multiply both sides by c x p {  E t )  and integrate Over positive 
1. By (8) and (7), the LHS is immcdiatcly identified with the Green function of 
fI = T,,, + V(0) and (33) takes thc form 

(4bKj I  - W ’ l d  
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The important step to make next, is to substitute s for s K v ( t )  and s' for s K y ( t ' )  
inside the path integral (note that properties (C2) and (C3) are used). Thus we arrive 
at 

Summarizing and recalling the  remark made below (8) concerning the allowed values 
E of the energy, we have shown: 

Statement 3. The rrunsforniution idenriry (33) intplies the following path-integral rep- 
resentation for the Green funcrion of rhe Huniilronian H = Tm + V ( 4 )  (reca// the 
one-to-one correspondences 7;,, - T U ,  - dhI cmd rhat k( i . , )  = q,  ) 

In consequence, the representation (36) is valid if the conditions (Cl), ( C t ) ,  (C3) 
and (C4') are fulfilled. This is useful for applications in quantum physics. 

The explicit evaluation of the path integral in (36) needs a substitution inside the 
delta function 6 ( k ( y ( s ) ) -  qb) .  This requires a closer look for mappings k which are  
not one-to-one, as is the case, for example, for the hydrogen atom [20]. 

6. Applicntion: Green function of the one-diinensional Morse system 

In this section we apply statements 2 and 3 to calculate the Green function of the 
Morse system. This is a very illustrative example, because it requires also techniques 
from sections 3 and 4. 

We consider a particle o n  thc Euclidcdn linc W under the influence of the potential 

v(q)  = v, ( e - 4 0 Y  - . 2ye -~""  1 \'; > 0 a,? E W n # 0.  (37) 

This defines (for y = 1 )  the Morsc systcm [42]. Since the corresponding Hamiltonian 
is = ip* t V ( i ) ,  the associated Markov process is the one-dimensional Wiener 
process. Recalling the Feynman-Kdc formula (10) we can represent the Green func- 
tion of the Morse system (for E < --r'Vo) as 
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In order to calculate this non-Gaussian path integral we consider the path space 
C(Iwt,r,) equipped with the measure d N  = dBO and perform a suitable space and 
time transformation to the path space C(R,  q,) with the measure dM = dW1 of the 
Morse system 

TIC:C(Wt,r,) -C(R,y,j  y ( s ) u l ( t ) = ( T l i y ) ( t ) .  (39) 

Following [43, 441, we choose 

and 

hence 

According to (31) we get the combined transformation 

x ( t )  = (Tliy)(t) = ( I < ~ ) ( S , , . ~ ( / ) ) =  -a-'hy(sKv(t)). (43) 

We will show in appendix 3 that these transformations satisfy conditions (Cl) to (C3). 
In addition, we will show there that (C4) holds. Hence, statement 2 leads to the 
useful transformation identity 

where F may be a fairly general functional on C(R, qa). It is the central p i n t  of 
this section. 

By statement 3 the Grcen function of the Morse system can be represented as 

where we have introduced the non-negative. quantities 
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(J- denotes the principal branch of the square root) and used the change-of-variable 
formula Cor the delta function. Moreover, one should note that ra = e-"'. and 
- e-"'D. 

This is the point where statement 1 comes in. In order to eliminate the l / y 2  
term in (45) we proceed as in section 4 by applying statement 1 with g = 0.  This 
gives 

b -  

for the Green function. By (14) and after performing the final s-integration with the 
help of [35, formula 6669.41, we end up  with 

( % l ( f i  - E)- ' !%)  

Here 0 denotes Heaviside's unit step function with the convention O ( 0 )  := $, r 
denotes Euler's gamma function, and MO,, and Wc,, denote Whittaker's functions 
[35, p 10591. This exact result for the Green function of the Morse system agrees 
with that in [3], but differs more or less from other results [6, 431. All these results 
were obtained by intuitive path-integral calcnlations. 

For completeness and convenience of the reader we present the discrete eigenval- 
ues E ,  and corresponding normalized cigenfunctions -&,(q) (existing Cor rw > 1) 
of f? as obtained from the poles and corresponding residues of (48) 

E" = -I( av,)* ~ , , ( q )  = 12al'" Lp,(ue-2aq) (49) 

Here .Le) denotes a generalized Laguerrc polynomial [35] and n is any non-negative 
h.n.!ege.r such that 

un := y w  - " 7 1  - 1 > 0 .  (51) 

These eigenvalues and eigenfunctions generalize results of [45], where the case 
was treated by operator methods. 

= 1 
I 
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I, Concluding remnrks 

We have presented two well-founded and practical techniques of how to perform 
changes of dimension and path-dependcnt time transformations in path integrals. 
Thus, rigour is supplied to earlier ideas for the evaluation of certain non-Gaussian 
path integrals. The power of these techniques has been illustrated by two standard ex- 
amples of quantum physics. We hope that we have thereby contributed to remove the 
uneasiness many people have felt about the rccipe-like way in which these interesting 
ideas were applied previously. 

We claim that all examples treated within the intuitive approaches are covered 
by the techniques presented in this paper, possibly with an extension of statement 1 
to other families of Markov processes. Here we only mention the Poschl-Rller and 
Rosen-Morse systems in addition to the examples mentioned above. 

Clearly, it is interesting to see how the techniques described work in the calcula- 
tion of propagators or Green functions for such one-particle quantum systems. Even 
so, one must not overestimate the value of path integration for obtaining these types 
of results, because they can often be obtained more directly with other methods (op- 
erator theory, stochastic ditferential equations). In our opinion, the real elficiency of 
path integration manifests itself in tackling other problems. For example, path inte- 
gration may serve to provide new estimates and controlled approximations 112, 13, 471 
which are hard to get otherwise as is the case for the celebrated polaron 11, 13, 481. It 
would be nice to extend the ideas underlying the above techniques to this and other 
non-Gaussian and effectively non-Markovian situations. 
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Appendix 1. Pmof of statement I for Feynmun-Knc functionnls 

we assert first that thc operator 
generator of the Bessel process with index U, see also [46, p 601, that is 

:= Tb,”, = $ ( 6 2  + i ( 2 v  + 1)p 4-1) is the 

(q’Iexp{ -tfu)lq) = b:”’(q’, q ) .  (52) 

This can be shown by verifying for (1 1) the (Fokkcr-Planck) equation 

and observing that  the differential OpCratOr on the RHS is (except for an Overall sign) 
the action of ?‘” in position representation. Note that for U = d / 2  - 1, this is one 

c 
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half of the adjoint of the radial part of the d-dimensional Laplacian. Hence, we have 
according to (7) 

Fbr the second equality we have used the commutation relation q p  - p q  = i. This 
completes the proof of statement 1 for Feynmdn-Kac functionals (16). 

Appendix 2. Proof of statement 2 

This proof is patterned after the so-called conipiirutional proof in [20]. It is sufficient 
to show 

because this implies (33) for cylindrical functionals f,, and hence for fairly general 
functionais F.  Without ioss ai generaiiry, we may assume 0 < t l  < z 2  < . . . < 2,. 
By the Markov property (4) the path integral on the LHS of (55) factorizes into the 
product (with qo := qa and 1, := 0) 

Using for each factor in ( S e )  condition (C4), equation ( 5 5 )  is seen to be equivalent 
to the equation (note that qj = k(1;)) 
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We will prove (57)-a consequence of the SO-Cdkd strong Markov property-by 
showing that the n-dimensional Laplace transforms of both sides with respect to the 
difference times t’, := t , ,  1; := t j  - t j - l ,  j = 2 , .  , . ,?I are equal. For the transform 
of the RHS of (57) we obtain 

x e x p { E 1 t K y ( s ’ , ) )  6 ( ( 1 c v ) ( 4 - q 1 )  ... 
x ~ X P  {En ( CY=,.;) - t , C y  ( C;’Ii’ s i ) ) }  6 (( I(Y )(CLIS:) - qn).  

(58) 

In the last step we have substituted 

.- .- s,<,(t;) s’ ] .- .- 5,<,(C:=, t i )  - + I  j = 2,. . . , n  

and used (C2) and (C3). The integrand 0 1  the last path integral is a product of 
n functionals, the j t h  factor of which depending only on the values of the paths 
between the times CiSi s; and E:=, s i .  Hence, by the Markov property, this path 
integral factorizes, giving 

rm r m  

But this is exactly what is obtained when taking the n-dimensional Laplace trans- 
form of the LHS of (57) with respect to L; (as defined above) and substituting 
s. I := s K y ( t ; ) .  

Appendix 3. Check of conditions (CI) to (C4) for the Morse system 

... we want io “Pij’ jpdiemeni 2 jr7 I?iGii  t(j pici\ii (441, ThiiS, we have io  check ihe 

conditions (Cl) to (C4): 

Condition on the space transformation (40): 

(C1) Clearly, k is a smooth mapping from U”., onto W 
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Conditions on the time transformation (42): 

(CZ) 
(C3) Observe that 

Obviously, tri,(s) is strictly increasing in s. 

t i ( y ( S ) > a - y s d s ‘ 8 ( 1  -y(s ’ ) ) .  (60) 

Since by definition and (13) the paths y realize the radial part of a hvo- 
dimensional Wiener process, it follows from (12, theorem 7.131 that the RHS of (60) 
tends to infinity as s - ~3 for almost all y. 

Condition of statement 2: 

(C4) Equivalently we will show (C4’), that is, the equality 

(61) 

The Laplace transform on the LI-IS of (61) wn be done using (491. Tb calculate 
the RHS we use statement 1 to eliminate the potential term. The resulting ‘free- 
particle’ Bessel path integral yields the transition density (11). The final s-integration 
is performed with the help of (35, formula 6.623.31, thereby completing the proof of 
(61). 
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